Worksheet on Differentiation

True of False.

Problem 1. Consider the function $f(x) = x^{1/3}$.

- 1. The function f(x) is continuous at 0.
- 2. The function f(x) is differentiable at 0.
- 3. The function f(x) has a tangent line at (0, 0).
- 4. Sketch the graph y = f(x)

Problem 2. Consider the function $f(x) = x^{2/3}$.

- 1. The function f(x) is continuous at 0.
- 2. The function f(x) is differentiable at 0.
- 3. The function f(x) has a tangent line at (0, 0).
- 4. Sketch the graph y = f(x)

Problem 3. If f'(a) exists then $\lim_{x\to a} f(x)$

- 1. must exist, but there is not enough information to determine it
- 2. equals f(a)
- 3. equals f'(a)
- 4. may not exist

Problem 4. Compute the following derivatives.

1.
$$f(x) = 2^{2016}$$

- 2. $f(x) = \frac{1}{16}x^4$
- 3. $f(x) = x^2(5 2x)$

$$4. f(x) = \sqrt{x} - x$$

5.
$$f(x) = e^{\sqrt{2x+1}}$$

- 6. $f(x) = \sin x \cos x$
- 7. $f(x) = \cot x$
- 8. Suppose the derivative of $\ln x$ exists. Find it using the chain rule. (Hint: use $e^{\ln a} = a$.)
- 9. Using the previous problem, show that the derivative of x^r is rx^{r-1} for *any real number* r.